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Spring-block models have been very useful for understanding slip complexity of earthquakes. So far, how-
ever, they have been restricted to one or two dimensions or simple nearest-neighbor stress transfer. Here, we set
up a three-dimensional spring-block model with long-range stress transfer and, in a second step, implement
several simplifications to realize a considerable gain in computational efficiency. Qualitatively, the two ver-
sions do not differ and we use the fast version to investigate basic properties of the model and to compare to
the Olami Feder Christensen �OFC� model. The spatial distribution of hypocenters is found to be scale free. At
the end of a simulation of 107 events, it takes a value of D2�1.8±0.1. At this point, however, the spatial slip
organization is not stationary yet and the fractal dimension still grows slightly. This does not affect respective
frequency size statistics, though, which exhibit a clear power law with a characteristic cutoff that depends on
the grid size. The statistics appear smoother than in the OFC model and lack the kink between events of size
1 and 2. In addition, strong periodicities of large events as in the OFC model do not occur in our model. In
stark contrast to the OFC model, results remain the same if periodic boundaries are used. Another significant
difference is the stableness of results against imposed disorder. Contrary to the OFC model, results do not
change if threshold values are randomly distributed in an interval of ±10% around the mean value. Concluding,
the model that we propose shares the main properties of the OFC model, but outreaches the latter in being
stable in a larger set of configurations.
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I. INTRODUCTION

Natural seismicity results from numerous processes acting
on a broad spectrum of scales. For example, earthquake
nucleation takes place on a local scale, whereas stress trans-
fer on a given fault, and the interaction between different
faults occur over much larger scales. A comprehensive model
of all processes that govern seismicity does not yet exist, but
even if all processes were known in detail, computational
constraints would still be a limiting factor. As a consequence,
seismological modeling largely focuses on a subset of seis-
mic properties and scales, such as the ubiquitous observation
of scale-invariance in frequency size �FS� statistics of earth-
quakes.

Scale-invariance has been qualitatively reproduced by a
particularly simple but rich class of approaches known as
spring-block models. The physical basis for these models is
the slow accumulation of stress through tectonic loading
coupled to the sudden relief of stress when a failure condi-
tion is met. The first model of this type consisted of a one-
dimensional chain of masses governed by stick-slip motion
under the applied rules �1�. In this model, an earthquake
corresponds to a chain reaction of sliding blocks on an ex-
isting surface, which is governed by the interplay between
friction and elastic interactions. Later works used two-
dimensional cellular automata �2–4� and related the dynam-
ics of their systems to the concept of self-organized critical-

ity �5–7�. These models provided a mechanism that led to
Gutenberg-Richter �GR� like FS statistics without any tuning
of the system. The simple nearest-neighbor rules of the
Olami-Feder-Christensen �OFC� model, as one of their most
studied members, produce an internal complexity that even
accounts for temporal clustering of events consistent with
Omori’s law for aftershocks at a qualitative level �4,8�. In
addition to analyses of the FS statistics, Ito and Matsuzaki
included investigation of the fractal distribution of earth-
quake epicenters generated by their model �3�. While obtain-
ing results that are in agreement with empirical values, they
point out that a three-dimensional model would be more re-
alistic for simulating earthquakes as anisotropy could be in-
corporated. Likewise, Peixoto and Prado studied statistics of
epicenters in the OFC model in two and three dimensions
�9�. In the case of the three-dimensional OFC model, how-
ever, the applied rule for equal stress transfer to all nearest
neighbors is not justified in terms of the stress redistribution
around a shear crack.

Regarding underlying physics and the stress transfer in
elastic solids, a shortcoming of the mentioned models is the
limitation of stress transfer to nearest neighbors. Weatherley
et al. analyzed the dependence of FS statistics in a two-
dimensional spring-block model on the mode of stress trans-
fer and found that for short-range stress transfer, they obtain
GR type statistics and for long-range stress transfer statistics
that agree with the characteristic earthquake distribution
�10�. This result, however, is not unique as is shown by the
work of Chen et al., who modeled crack propagation in two-
dimensional and three-dimensional grids �11�. Local break-
down of elastic forces leads to long-range redistribution of*Electronic address: jansen@geo.uni-bonn.de
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stress, but, contrary to Weatherley, the model generates GR
like statistics, with a b value of b�0.4 in two and b�0.6 in
three dimensions, respectively.

While the former models all describe slip events on a
given surface and associate the size of an earthquake with the
amount of slipped blocks, the model of Chen et al. describes
the propagation of a crack in a brittle medium and relates the
successive breaking of springs to earthquakes. Consequently,
earthquakes are not restricted to prescribed fault planes. The
same concept is followed by Sahimi et al. and Arbabi et al.
who investigated mechanical breakdown of disordered solids
�12,13�. They use three-dimensional grids of sites that are
connected by springs and governed by elastic interactions up
to a threshold value. Once a spring reaches its threshold
value, it is broken irreversibly. Elastic properties are varied
in different ways, which are analyzed with regards to the
respective mode of macroscopic failure. This model was
used to suggest that a percolation process accounts for both
the geometry of fault patterns and the spatial distribution of
earthquakes �14�.

Here, we set up a continously driven, nonconservative
spring-block model in three dimensions. The model simu-
lates earthquake sequences of a finite fault zone where slip is
not confined to a predefined plane. We calculate the stress
redistribution through a Green’s function of a slipping block,
which results in long-range stress transfer including both re-
gions of stress increase and of stress decrease. In a second
step, we implement several simplifications to realize a con-
siderable gain in computational efficiency.

II. MODEL DESCRIPTION

We analyze the response of a three-dimensional brittle
material subjected to continuous shearing under vertical con-
straint. The material behaves elastically to a certain threshold
value, after which the material fails via slip within the body
that perturbs the local and far-field stress field. The stress
redistribution may lead to a propagation of the failure and
cause extended areas to fail successively.

As in most earthquake models, the timescales of tectonic
loading and individual earthquakes are decoupled. That is,
the system is loaded via shear until failure begins on one
cell, and then shearing is halted during the subsequent failure
sequence. Our model does not include the dynamics associ-
ated with a failure, but restricts itself to the determination of
the stress field before and after failure. In regard to failed
elements, stress drops to zero and those elements reenter the
elastic regime �more details given below�.

We describe two versions of the model. In the first ver-
sion, called the basic model, we incorporate an exact solution
for calculation of the stress field associated with failure.
However, the exact solution is computationally cumbersome,
so we also explore a much faster algorithm that makes sev-
eral simplifications.

A. Basic model

The model consists of a three-dimensional grid of N�N
�N blocks, each of which is connected by springs to its six

nearest neighbors �Fig. 1�. Shearing of the grid is constrained
to one direction and only the forces on vertical springs are
considered. The springs’ stiffness is equally set to one and
each spring is given a uniform maximum force Fcrit that it
can support. On reaching this threshold, a spring breaks and
is replaced by a new spring with zero force after the grid has
been updated.

As we do not look at the elastodynamics of the earthquake
process, we can use the constraint that all blocks are at rest
after reaching their final position. Therefore the sum of all
elastic forces acting on a block must be zero:

�
j=1

6

uj� − ui� = 0. �1�

In this equation, uj�−ui� is the relative displacement of blocks
i and j that occurred since the spring that connects the two
blocks was inserted into the grid. The corresponding set of
N3 linear equations is solved by a conjugate gradient method
�15�, which is a semi-iterative scheme that arrives at the
exact solution after N3 steps. Since the effort per step is
proportional to N3, the total numerical effort required for
solving the set of linear equations is of the order of N6. By
losing bonds in the case of breaking of one or more springs,
the set of linear equations transforms into a new one, which
determines the displacements after failure. The associated
redistribution of stress may cause further springs to break,
requiring the next recalculation. Each recalculation is re-
garded as one relaxation cycle and after each relaxation
cycle, all broken springs are replaced by new ones with zero
force. The whole series of relaxation cycles until no further
breakings occur is termed an event.

At start of a simulation, all blocks are assigned a random
slip history accompanied by the corresponding stress field.
Successively, the grid is always sheared to the point where
the next spring reaches its threshold value and halted at that
point. Since any shearing results in equal stress increase on
all springs as long as no springs break, this point can easily
be calculated and the displacements and corresponding
stresses be updated respectively. Following, the sequence of
relaxation cycles is calculated until the event ceases and the
grid is sheared to the next breaking condition. By applying
this procedure we get a continously driven model.

FIG. 1. �Color online� Setup of a three-dimensional spring-block
model. Shearing is in one direction only and vertical displacements
are not allowed.
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The total stress redistribution associated with one relax-
ation cycle sums up to a stress drop, which makes the model
inherently nonconservative and causes events eventually to
stop. The actual amount of this stress drop depends on the
forces that acted on the failed springs before breaking and is
given, in the case of one breaking spring, as

�
i=1

N3

��i � − 1.5 � Ffail, �2�

where the relationship is exact in the limit of inifinte grid
size.

B. Fast model

The time needed for recalculation of the stress field after
breaking of springs scales with the grid size N as N6 in the
basic model. Simulation of, e.g., 10 000 events for a grid of
size N=50 takes several weeks. To provide for larger statis-
tics, we aim at an algorithm that does not need to resolve the
whole system of equations after each breaking. An ideal al-
gorithm would make use of a relaxation rule as used by the
OFC model, meaning that for each redistribution of stress, a
prescribed set of rules is applied. Thus no set of equations
has to be solved and the respective numerical effort becomes
independent of grid size. Based on the work we have done,
however, it appears that there does not exist a relaxation rule
for the three-dimensional model that keeps the model’s be-
havior. Nevertheless, we could reduce numerical effort sig-
nificantly by using several simplifications.

In a first step, we make use of discretized Green’s func-
tions, a common tool in continuum mechanics. For a given
grid size, we can calculate all finite Green’s functions by
means of the conjugate gradient method and use them in
later simulations to calculate the stress redistribution after
failure. Let Gi be the Green’s function for failure of block i.
To update the stress of block j, the respective value of the
Green’s function, Gj

i, has to be multiplied with the force
which acted on the spring i before it broke. The benefit of
this step is to reduce numerical effort from N6 to N3.

However, there is one drawback of this procedure, which
leads to the first of the following succession of simplifica-
tions:

�i� Only one spring breaks at a time:
The Green’s function that is to be used depends on the

spring or subset of springs that broke. Since we do not know
beforehand which springs are going to break in a simulation,
we would have to consider all possible subsets of the grid,
which amounts to �m=1

N � N3

m
� different Green’s functions. Cal-

culating all these finite Green’s functions would be equally
cumbersome. Additionally, storing all respective values dur-
ing a simulation would quickly exceed all available working
memory. Therefore we make the assumption that only one
spring breaks at a time, which keeps the amount of necessary
Green’s functions to N.

This simplification means that an incidence of m breaking
springs is resolved into a sequence of m single breakings.
Simulations showed that the general behavior of the model
does not change by applying this step.

�ii� Boundary effects are neglected:
We further reduce the amount of Green’s functions to be

stored by using the same one for each breaking spring,
namely the one derived for failure of the spring in the center
of the grid. We thus reduce demanded storage capacity dur-
ing simulation from N6 to N3. Again, impact on the simula-
tions turned out to be minor. Naturally, the influence grows
bigger as the grid gets smaller, but we found no significant
difference in the results for grids bigger than N=64.

�iii� Stress transfer is confined to a limited region:
As the influence on the stress field falls as 1 /r3 with dis-

tance r to the failed spring, we take another step which
brings us closer to a relaxation rule. After breaking of a
spring, we do not recalculate the stress field of the whole
grid, but only for blocks belonging to a cuboid centered
around the broken spring. The cuboid will be termed the
transfer region �TR�. We conjecture that the model’s main
features are not determined by stress changes which fall be-
low a certain fraction of the main impact occurring in the
near field.

Depending on the size of the transfer region we get a
compromise between accuracy, relative to the basic model,
and efficiency of the algorithm. This last step reduces nu-
merical effort from N3 to N0.

The biggest gain in efficiency comes with step iii if the
transfer region is limited to a small cuboid. Because of the
dipole like pattern of stress redistribution in the basic model,
we choose the horizontal extension of the TR twice as large
as the vertical. Thus we are roughly guided by isolines of the
stress change in setting the boundaries of the TR. Let the
indices of a failed block be ijk. We will then refer to a TR
that includes blocks with indices i , j� �i−h , j−h ; i+h , j+h�
and k� �k−v ;k+v� as of size v /h. Considering a grid of size
N=128, chosing a transfer region of size 3/6, for example,
results in a numerical effort proportional to �2�3+1��2
�6+1�2=1183 as compared to 1283=2 097 152 in the basic
model.

However, the assumption that minor stress changes do not
influence the model’s behavior does not hold if a systematic
deviation is summed up over long event sequences. As was
mentioned at the end of Sec. II A, each relaxation cycle leads
to an accumulated stress change, the amount of which is
given by Eq. �2�. Due to the linearity and boundary condi-
tions of the system of equations, this stress drop is evenly
distributed over all N layers, with the value for each layer
being

�
il

��il
� − 1.5 � Ffail/�N − 1� . �3�

What turns out to be crucial is that this property is only
reached if we sum over all blocks belonging to a layer. Inside
given subsets, the sum of stress change differs sligthly from
layer to layer. These differences get bigger the smaller the
subsets get. Hence confining stress transfer to a limited TR
means that for each layer, we get a deviation of the accumu-
lated stress change from its must value according to Eq. �3�.
During a respective simulation, this leads to a systematic
deviation which accumulates increasing mismatches in mean
stress between adjacent layers. These mismatches are recur-
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rently reduced in excessively big events. Since this feature
neither occurs in the basic model nor in steps ii and iii, it
appears clear that it is caused by the disregard of uniform
stress drop per layer.

To avoid this problem, we searched a way to adhere to the
uniform stress drop, while still keeping numerical effort pro-
portional to N0. The latter implies that upon failure of a
spring we do not want to treat the blocks of all grid layers
individually. Thus ensuring a uniform stress drop over all
layers can only be done by relaxing each block in the grid by
the same amount, which can numerically be solved by intro-
ducing a respective global variable. This procedure, however,
implies that the accumulated stress drop inside the TR has to
be zero. To meet this last condition, we modify the stress
field inside the TR a second time after we have redistributed
stress according to the Green’s function.

Details of this modification are given in the following.

Modification of stress transfer inside the TR

Readjusting the accumulated stress change inside the TR
can be done in several different ways, e.g., by shifting the
stress of all blocks by a constant value. Surprisingly, the
different schemes did not significantly change simulation re-
sults. To maintain the relative “topography” of stress change
of the original Green’s function as well as possible, we chose
the following scheme for our results section.

The modifications follow two principles: �i� No stress
change is allowed to alter its algebraic sign; and �ii� the
blocks’ relative order concerning their absolute value of
stress change shall be kept.

The following list summarizes the numerical steps, with
steps �a� and �b� being performed individually for each layer
of the TR and step �c� only once at the end of each relaxation
cycle:

�a� While changing stress according to the Green’s
function, keep track of the accumulated stress change and the
accumulated absolute value of stress change,

�
il,TR

��il,TR
and �

il,TR

���il,TR
� .

�b� Subtract from each block inside the transfer region
a fraction of the accumulated stress change, which is
weighted by the absolute value of stress change that the
block received in step �a�. The net stress change for block i
in layer l inside the TR after steps �a� and �b� thus becomes

��il,TR
� = ��il,TR

−
���il,TR

�

�
il,TR

���il,TR
�

� �
il,TR

��il,TR
. �4�

This results in the new accumulated stress change being zero.
�c� Add the �negative� value �il

��il
/N2 to every block

in the grid, which after step �b� results in the correct value
��il

�as given by Eq. �3�� for each layer l. As the stress
change in this step is the same for every block, this step can
be performed by introducing a respective global variable.

By applying this procedure, the property of uniform stress
change is maintained while still keeping numerical effort

proportional to the size of the transfer region. However, the
smaller the TR becomes, the bigger the deviation gets that
has to be accounted for in the modification of the stress
transfer. As we will see in Sec. III, this results in a tendency
to a smaller b value and an excess of big events.

III. RESULTS

We analyzed FS statistics and the spatial distribution of
hypocenters in terms of scale invariance. Furthermore, we
chose FS statistics as a criterion both to validate the applica-
bility of the fast model and to compare with the OFC model.

We obtained FS statistics for 90 000 events on a simula-
tion of the basic model on a grid of size 65�65�65 �the
simulation took about 6 months, which compares to about
10 min if run with the fast model and a TR size of 3 /6�. The
FS statistics exhibit a clear power law over two magnitudes
with a b value of b�0.48. Chen et al. obtained a value of
b�0.6 when simulating 10 000 events on a grid of size 20
�20�20. The FS statistics of Chen et al. are not as smooth
as in our model, presumably because of the small grid they
use and the rather short simulation. In comparison with the
OFC model ��=0.2 which corresponds to a level of conser-
vation of 80%�, our results show a power law which is some-
what smoother and lacks the characteristic kink of the OFC
model that occurs at the transition from events of size s=1 to
s=2 �Fig. 2�.

We repeated the simulation described above using the fast
model with two different TR sizes and compared the results
to that of the basic model �Fig. 3�. Our aim was to determine
how the simplifications of the fast model affect the FS sta-
tistics and to assess the influence of the TR size. The results
show that, when using large transfer regions, the FS statistics
differ only slightly from those of the basic model. However,
reducing the size of the TR has two effects: �i� the b value of
the FS statistics becomes slightly smaller; and �ii� there is an
excess of big events.

FIG. 2. �Color online� Comparison of FS statistics for three-
dimensional and OFC model �grid size N=65, 7�104 events for
three dimensional model and 7�105 events for OFC model,
respectively�.
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Since we wanted to investigate the qualitative behavior of
the three-dimensional model rather than to give precise val-
ues of scaling exponents, we used the fast model from now
on, which allows for much larger statistics. The statistics that
we generated with the basic model, however, indicate that
the following results are also characteristic of the basic
model.

Calculations for five different grid sizes ranging from N
=17 to N=257 all show a clear power law with a relatively
constant b value. The results also exhibit the typical expo-
nential cutoff that depends on the grid size �Fig. 4�.

To estimate the fractal dimension of the spatial distribu-
tion of hypocenters, we used the two-point correlation di-
mension D2, as did Ito and Matsuzaki �3�. The correlation
dimension D2 is considered to be close to the fractal dimen-

sion D. Using a sequence of N events, we first calculate the
correlation integral C��r�:

C��r� �
1

N2�
i=1

N

�
j=i+1

N

H�r − �Xi − Xj�� , �5�

where H�x� is the Heaviside function and �Xi−Xj� the dis-
tance between hypocenters of events i and j. In a second
step, we evaluate D2 by using the fact that for a certain range
of distances r, the correlation integral behaves as

C��r� � rD2. �6�

This range basically excludes very small and large distances
for reasons of grid discreteness and finiteness, respectively.
In between, however, we get a smooth power law, from
which we estimate the fractal dimension according to Eq.
�6�. Considering N, we chose a value of 2000, meaning that
for a simulation consisting of 107 events we obtain 5000
representative values for the fractal dimension. We found
three main properties �Fig. 5�a��:

�i� At start of the simulation, the fractal dimension D2 is
rather small and grows as the simulation proceeds.

�ii� Deviation of D2 grows with ongoing simulation.
�iii� The value of D2 depends on the size of the transfer

region.
We performed a similar analysis for the OFC model, where
D2 was on average constant throughout the simluation, but
showed a deviation that exceeded the one of the three-
dimensional model. Comparison with the results of Ito and
Matsuzaki is not very meaningful, because they calculated
only about 12 values for D2 at the start of the simulation. In
that range, our simulation does not show a large deviation.

The third point stems from the internal organization of
slip concentration. Simulations start with slip primarily lim-
ited to a horizontal plane. As the simulation proceeds, the
vertical extent of slip increases and hypocenter locations fill
a larger part of the volume. As a measure of this evolution,
we monitored the amount of layers involved in one event,

FIG. 3. �Color online� Comparison of FS statistics as calculated
by the basic and the fast algorithm �grid size N=65, 7�104 events�;
TR size for the fast algorithm is 16/32 for �a� and 3/6 for �b�. For
definiton of TR see Sec. II B.

FIG. 4. �Color online� FS statistics for five different grid sizes
�increasing rightwards� as indicated in the plot’s legend �each 107

events, TR size 3/6�.
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devided by the third root of the event size �Fig. 5�b��. This
value should be close to 1 for a totally isotropic model. As
the simulation proceeds, events get more and more “spheri-
cal” which corresponds to the fact that more and more layers
become available for slip. This evolution takes place faster
for larger transfer regions because the stress redistribution
affects blocks at longer ranges. However, this difference is
only transient as we found by performing the same monitor-
ing after skipping 109 events.

At the end of the simulation, the fractal dimension takes a
value of D2�1.8±0.1, which compares to D2�1.3±0.1 for
the two-dimensional OFC model. However, the value still
grows as the simulation proceeds and convergence towards a
limit of about 2 cannot be precluded on the basis of the
present simulations.

Here, we compare some basic properties of our model
with those of the two-dimensional OFC model.

The evolving FS statistics of the three-dimensional model
appear smoother than those found in the OFC model. We
quantify this difference by choosing a measure of smooth-
ness termed � that is based on the standard deviation of
event size numbers. Assuming that event size numbers N�A�
for a given event size A are Gaussian distributed with a mean

value of N̄�A� and a standard deviation of 	N�A� for big
enough event numbers N �in our case N�1000�, we define
the following measure of deviation:

�i =
1

Amax
�
A=1

Amax 
Ni�A� − N̄�A�
	Ni�A�

�2

�7�

with

N̄�A� =
1

imax
�
i=1

imax

Ni�A� .

The index i refers to all events from the interval ��i
−1�107; i107� and is termed the event increment. Thus each
value �i is a representative value for a subset of 107 events
of the running simulation. Using this measure, a simulation
of 3�108 �imax=30� events supports the impression that FS
statistics tend to be smoother in the three-dimensional model
�Fig. 6�.

Analyses of time series generated by the OFC model have
indicated a complex behavior. While events are clustered on
the short time scale, large events tend to occur rather peri-
odically with a recurrence interval that depends on the level
of conservation. Event sequences spanning an interval of ten
model units �corresponding to about 5�106 events� clearly
show these periodicities �16�. In contrast, respective simula-
tions of the three-dimensional model do not share this prop-
erty �Fig. 7�. This supports the assumption that events occur
uncorrelated in the three-dimensional model, which is in line
with the results of the previous subsection �Fig. 6�. However,
this conclusion basically holds for long time series as Fig. 6
samples values for sequences of 107 events each. Moreover,
temporal clustering is not sure to be detected by mere visual
impression. In the case of the OFC model, sequences of fore-
and aftershocks had not been described until ten years after
the publication of the original paper on the model �8�. There-
fore it would be valuable to further analyze the three-
dimensional model for temporal clustering on the short time
scale.

Two drawbacks of the OFC model are its sensitivity to its
boundary condition and to imposed disorder. We analyzed

FIG. 5. �Color online� Evolution of fractal dimension D2 �a� and
normalized vertical extent of events �b� for two different TR sizes
�grid size N=65, 107 events�.

FIG. 6. �Color online� Comparison of standardized deviation of
three-dimensional �solid �red� line� and OFC model �dashed �blue�
line�. For definition of the deviation �i refer to text �Eq. �7��.
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the three-dimensional model when run with horizontally pe-
riodic boundary conditions and with a random spreading of
the critical value that a spring can support, respectively. In
the latter case, we draw the threshold values from a uniform
distribution in the interval �0.9; 1.1�. We performed the same
simulations with a corresponding version of the OFC model
for comparison. Surprisingly and contrary to the OFC model,
neither horizontally periodic boundaries nor imposed disor-
der of the order of 10% of the threshold value influence the
obtained FS statistics in the three-dimensional model �Figs. 8
and 9�.

IV. CONCLUSIONS

We propose a model for simulation of a fault, where slip
is not confined to a plane, but may occur in a region of finite
thickness. To this end, we have set up a continously driven,
nonconservative spring-block model in three dimensions
with long-range stress transfer. In a second step, we have
implemented several simplifications to realize a considerable
gain in computational efficiency. Qualitatively, the two ver-
sions do not differ and we have used the fast version to
investigate extended statistics in terms of scale invariance
and to compare to the well known results of the two-
dimensional OFC model.

The spatial distribution of hypocenters is found to be
scale free. Based on a sequence of 107 events, we estimate a
fractal dimension of D2�1.8±0.1. However, this value still
grows slightly, meaning that spatial organization of slip has
not reached stationarity yet.

Analogous to the OFC model, obtained FS statistics ex-
hibit a clear power law over several magnitudes with a char-
acteristic cutoff that depends on the grid size. FS statistics
are somewhat smoother than in the OFC model and lack the
characteristic kink at the transition from events of size s=1
to s=2. The strong periodicity of large events as known from
the OFC model has not been detected in event sequences of
the three-dimensional model. This supports the assumption
that events tend to occur uncorrelated on long timescales.

Observed FS statistics remain the same if periodic bound-
aries are used, which is in stark contrast to the OFC model.
Thus the often cited suggestion that the emerging state of
criticality in the OFC model has its cause in the specific
boundary condition cannot hold in the three-dimensional
model. Another striking difference is the stableness of results
against imposed disorder. Contrary to the OFC model, results
do not change if threshold values are not set uniform but
randomly distributed in an interval of ±10% around the mean
value. This is a remarkable advantage over the OFC model
regarding its applicability to natural seismicity.

FIG. 7. �Color online� Time series of an event sequence pro-
duced by the fast algorithm with a TR of size 3/6. The time span of
one model unit corresponds to the time it takes to load a spring of
zero force up to its threshold value. This holds for both the OFC
model and the three-dimensional model.

FIG. 8. �Color online� Comparison of FS statistics for three-
dimensional and OFC model with periodic boundaries �grid size
N=65, 107 events�.

FIG. 9. �Color online� Comparison of FS statistics for three-
dimensional and OFC model with randomly distributed threshold
values �grid size N=65, 107 events�.
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We conclude that while the three-dimensional model that
we propose shares the OFC model’s essential properties it
outreaches the latter one in being stable in a larger set of
configurations. To find out what restrictions of the OFC
model, as compared to our model, are responsible for its
shortcomings, dedicated tests would have to be performed.
This would certainly add to the understanding of the OFC
model and of spring-block models in general.
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